Large scale stream
processing with ;
Apache Flink

=
X

Nikolay Stoitse
Sr. Software Engineer at Uber Tech Sofia

/
<
=3

——

v Uber

/A, =

\

Stream Processing?

Stream Processing?

User Interaction Logs

Stream Processing?

User Interaction Logs

Application Logs

Stream Processing?

User Interaction Logs
Application Logs

Sensor Data

Stream Processing?

User Interaction Logs
Application Logs
Sensor Data

Database Commit Logs

Infinite Dataset

Producer

Producer Stream

Producer Stream C>—>

SSSSS m< E

Big Latency

Producer Stream

Real-time
service

Apache Storm

storm.apache.org

High-latency & accurate

VS.
Low-latency & approximation

Lambda architecture

OREILLY"® Ideas Learning Platform Conferences Shop Q SIGN IN

ON OUR RADAR I Al I DATA I DESIGN I ECONOMY I JUPYTER I OPERATIONS I SOFTWARE ARCHITECTURE SEE ALL

I DATA TOOLS

Questioning the Lambda Architecture

The Lambda Architecture has its merits, but alternatives are worth exploring.

By Jay Kreps. July 2, 2014

The call for proposals is now open for the Strata Data Conference
in London, April 29-May 2, 2019.

Nathan Marz wrote a popular blog post describing an
idea he called the Lambda Architecture (“"How to beat

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

https://www.oreilly.com/ideas/questioning-the-lambda-architecture

Kappa Architecture

Use Apache Kafka

Durable, scalable, fault-tolerant

Producer Kafka (H Stream
Processor

E®7E8 Canary and Cobb

UBER EATS 123 Main St
Customer Satisfaction Based on past 3 months
95% You're a customer champion V
satisfaction rating Customers love ordering from you! See what they're -
I | 100% saying about your dishes belo

Top Restaurants: 100%

Ratings
item Satisfaction Rating Negative Feedback
Cobb's Salad
Crispy Fried Chicken
Kettle Corn on the Cobb
Cobb's Special
Corn Meal

Spicy Fried Chicken

o
s]

Corn on the Cobb

Cookies and Corn 89% (=]

Metrics we want to track

Net payout Order acceptance rate

Daily items sold Order preparation speed

Weekly items sold Item rating

Real time

Scalable

Granular

Highly available

Order Stream

Payment Stream

User Rating Stream

Order Stream

Payment Stream Stream Processor

User Rating Stream

SdMZd

« Getting Started

Hello Samza
Download
Feature Preview

& Learn

Documentation
Configuration
Metrics
Javadocs
Tutorials

FAQ

Wiki

Papers & Talks
Blog

% Community

What is Samza?

Apache Samza is a distributed stream processing framework. It uses Apache Kafka for messaging, and Apache Hadoop YARN to provide fault
tolerance, processor isolation, security, and resource management.

Simple API: Unlike most low-level messaging system APIs, Samza provides a very simple callback-based “process message” API
comparable to MapReduce.

Managed state: Samza manages snapshotting and restoration of a stream processor’s state. When the processor is restarted, Samza
restores its state to a consistent snapshot. Samza is built to handle large amounts of state (many gigabytes per partition).

Fault tolerance: Whenever a machine in the cluster fails, Samza works with YARN to transparently migrate your tasks to another machine.
Durability: Samza uses Kafka to guarantee that messages are processed in the order they were written to a partition, and that no
messages are ever lost.

Scalability: Samza is partitioned and distributed at every level. Kafka provides ordered, partitioned, replayable, fault-tolerant streams.
YARN provides a distributed environment for Samza containers to run in.

Pluggable: Though Samza works out of the box with Kafka and YARN, Samza provides a pluggable API that lets you run Samza with
other messaging systems and execution environments.

Processor isolation: Samza works with Apache YARN, which supports Hadoop’s security model, and resource isolation through Linux
CGroups.

samza.apache.org

Apache Flink

flink.apache.org

Everything is a batch

VS.
Everything is a stream

DataSet API DataStream API

Dataflow graph

DataStream<String> lines = env.addSource (
new FlinkKafkaConsumer<>(..));

DataStream<tvent> events lines.map((line) -> parse(line));

DataStream<Statistics> stats = events
.keyBy ("1id")
.timeWindow (Time.seconds (10))

.apply (new MyWindowAggregationFunction());

stats.addSink (new RollingSink(path));

https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

DataStream<String> lines env.addSource (

: Source
new FlinkKafkaConsumer<>(..));
DataStream<Event> events = lines.map((line) -> parse(line)); Transformation
DataStream<Statistics> stats = events
.keyBy ("id")

.timeWindow (Time.seconds (10)) Transformation

.apply (new MyWindowAggregationFunction()) ;

stats.addSink (new RollingSink(path));

=

Sink

e

Source Transformation Sink
Operator Operators Operator
v / \\ \
keyBy()/
Source map() window()/ Sink
apply()
Stream

https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

keyBy()/ Streaming Dataflow
Source map() wlnd(:w(())/ Sink (condensed view)
apply

Operator Stream @

o L "y o

keyBy()/
Source map() window()/
[1] 1y apply()
‘ A1)
Operator Stream Sink
Subtask Partition (1] | Streaming Dataflow
| [\ (parallelized view)
keyBy()/
Source map() window()/
2] 2] apply()
2]
parallelism = 2 \

parallelism = 1

https://ci.apache.org/projects/flink/flink-docs-release-1.6/concepts/programming-model.html

Flink Program

Optimizer

Graph Builder

Task Manager Task Manager

| Flink Program |

. Optimizer :
i Graph Builder §

Job Manager

Snapshot Store

Task Manager Task Manager

| Flink Program |

. Optimizer :
i Graph Builder §

Client Job Manager

Fault tolerant

Snapshot Store

Task Manager

| Flink Program |

. Optimizer :
i Graph Builder §

Client Job Manager

Lightweight Asynchronous Snapshots for
Distributed Dataflows

Paris Carbone,
Gyula Fora,
Stephan Ewen
Seif Haridi
Kostas Tzoumas

Operator

Snapshot Store

Barrier

I I

Exactly Once Processing

Can handle very large state

Snapshot Store

Task Manager Task Manager

| Flink Program |

. Optimizer :
i Graph Builder §

Client

| Flink Program |

Optimizer

i Graph Builder |

Client

Snapshot Store

Task Manager Task Manager

Job Manager

Job Job

Manager Manager
Zookeeper

| Flink Program |

Optimizer

i Graph Builder |

Client

Snapshot Store

Task Manager Task Manager

Job Job

Manager Manager
Zookeeper

| Flink Program |

Optimizer

i Graph Builder |

Client

Snapshot Store

Task Manager Task Manager

Job Job

Manager Manager
Zookeeper

Joining Streams

Order Stream .

User Rating Stream .

Order Stream

User Rating Stream

Order Stream Local Join

HENEN] Ty
User Rating Stream Local Join
HEHEBE HE == one=

Order Stream Local Join

EEED N -
User Rating Stream Local Join
.... .:.: >l HE Bl

Apache Flink

Can join streams
Fault tolerant
Exactly Once Processing

Combines stream and batch processing

... but it requires Java/Scala code

Scalable, efficient and robust

El uber / AthenaX ®OWatch~ 56 | Y star 778 | YFork 137

I Projects 0 Lt Insights

<> Code (D Issues 12 Il Pull requests 2

SQL-based streaming analytics platform at scale

calcite flink sql uber streaming stream analytics data

D 19 commits ¥ 1 branch © 0 releases 42 6 contributors sfs Apache-2.0

Branch: master v New pull request Create new file Upload files = Find file Clone or download ¥

" walterddr change YARN setup Java Doc for 1.5 - Latest commit fcafb92 on 4 Aug

B athenax-backend change YARN setup Java Doc for 1.5 4 months ago
B8 athenax-tests Upgrade AthenaX to Apache Flink 1.5.0 (#24) 5 months ago
B8 athenax-vm-api Upgrade AthenaX to Apache Flink 1.5.0 (#24) 5 months ago

Bm athenax-vm-compiler Upgrade AthenaX to Apache Flink 1.5.0 (#24) 5 months ago

github.com/uber/AthenaX

SQL — what data to analyze

Flink — how to analyze it

MySQL
changelogs

Data sources

AthenaX master

ElasticSearch

Compiled Flink job MySQL
AthenaX rurmme -

AthenaX platform Output

SELECT
HOP_START (rowtime, INTERVAL ‘1’ MINUTE, INTERVAL ‘15’ MINUTE)
AS window start,
restaurant uuid,
COUNT(*) AS total order
FROM ubereats workflow
WHERE state = ’'CREATED’
GROUP BY
restaurant uuid,

HOP (rowtime, INTERVAL ‘1’ MINUTE, INTERVAL ‘15’ MINUTE)

CREATE FUNCTION AirportCode AS ..;
SELECT
AirportCode(location.lng,location.lat) AS airport

driver id AS driver id,

FROM
event user driver app
WHERE

NAME =‘trip start’

SELECT
w.created timestamp,
w.datestr,
w.restaurant_uuid,
w.order_job_uuid,
o.price,
o.currency,
FROM
ubereats_workflow_etd_summary w
JOIN
ubereats_order_ state_ changes o
ON
o.job uuid = w.order job uuid
WHERE
w.status IN (‘CANCELED_ BY EATER’, ‘UNFULFILLED')
AND
w.proctime
BETWEEN
o.proctime — INTERVAL ‘60’ SECOND
AND
o.proctime + INTERVAL ‘60’ SECOND

Project:
= (created_timestamp, datestr, restaurant_uuid,
order_job_uuid, price, currency)

Project:
= (created_timestamp, .., price, currency, ...)

Join:
rorder_uuid = o.job_uuid, status € (.) = true,
w.proctime e [0.proctime - 60000, o.proctime + 60000]

Project:
(order_job_uuid, .., status e (.)

TableScan:
ubereats_order_state_changes

TableScan:
ubereats_workflow_etd_summary

(@) original logical plan

Project:
r’ = (created_timestamp, datestr, restaurant_uuid,
order_job_uuid, price, currency)

Join:
rorder_job_uuid = r’.job_uuid,
rproctime e [r’.proctime - 60000, r’.proctime + 60000]

Calc:
r = (..., order_job_uuid),
condition = w.status e (..))

Calc:
r' = (job_uuid, price, currency)

TableScan: TableScan:
ubereats_workflow_etd summary ubereats_order_state_changes

(b) optimized logical plan

TwolnputStreamTask:

r' = (created_timestamp, datestr, restaurant_uuid,
order_job_uuid, price, currency)

SourceStreamTask: SourceStreamTask:
ubereats_workflow_etd _summary — ubereats_order_state_changes — r’
= (created_timestamp, ..) = (job_uuid, price, currency)

(c) compiled data flow program

Resource estimation and
auto scaling

Monitoring and automatic
faillure recovery

Introducing AthenaX, Uber
Engineering's Open Source
Streaming Analytics Platform

By Haohui Mai, Bill Liu, & Naveen Cherukuri

October 9, 2017

eng.uber.com/athenax

Thanks!

Nikolay Stoitsev @ Uber

Uber

