Don't Make It a Race

The Four Common Concurrency Data Control Patterns
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What You Will Learn

The overall concurrency landscape

The common ways to handle shared mutable state
— With detailed examples

How it all hangs together

Great places to go on holiday
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Agenda

Topic

Concurrency Low/Medium/High level

Shared Mutable State

Four Concurrency Control Patterns

Pessimistic Locking

Optimistic Transaction

Queue To A Single Thread

Partitioning The Data

Putting it all together
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Concurrency patterns|models|frameworks|techniques?

There are 3 levels

 High level — Models (how you will write your programs)
— Eg
— Threads & Locks
— Actors
— Implemented with frameworks

* Medium level — Patterns (how you will decide to handle shared mutable state)
— Discussed in detail in this talk

» Low Level — basic concurrency programming building blocks and techniques (how to build stuff from scratch)
- Eg
— Synchronized blocks
— StampedLock
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Low Level: Concurrency Building Blocks

S0 many

* Runnable | Thread | ThreadGroup | synchronized | Object.wait() | Object.notify() | Object.notifyAll() | NIO |

java.util.concurrent.locks | volatile | java.util.concurrent.atomic | java.util.concurrent | some of java.lang.invoke (eg
VarHandles) | @Contended

» Collections

— java.util | Clojure collections (all available in Java) | PCollections | Chronicle | Agrona | Guava | Eclipse | Fastutil |
Vavr | Apache | Trove | ObjectLayout/StructuredArray | Roaring Bitmaps | LMAX Disruptor | JCTools | high-scale-lib

» Doubtless many more
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Medium Level: Concurrency Patterns

Covered in this talk

« Built from those low level building blocks

» These are used to define the core data management in high level model frameworks

* Not mutually exclusive, often different ones used in the same framework/program for different data as appropriate

» Four common concurrency data control patterns:
— pessimistic locking
— optimistic transactions
— gueue to a single thread
— partitioning the data
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High Level: Concurrency Models

10 Common Concurrency Models (including the 7 from “Seven Concurrency Models in Seven Weeks” Paul Butcher)

» DIY - Threads & Locks (eg Thread class, Runnable, synchronized, java.util.concurrent.locks, Executors)

» Functional Programming (eg Streams & Lambda expressions, RxJava)

» Atomic & Thread-local (eg java.util.concurrent.atomic, Clojure collections, VarHandle, SoftwareTransactionalMemory)

» Actors (eg Akka framework)

« Communicating Sequential Processes (eg ParallelUniverse’s Quasar framework, Project Loom, Apache Camel)

» Data Parallelism (eg using GPUs, “Java on the GPU” Dmitry Aleksandrov https://imww.youtube.com/watch?v=BjdYRtL6qjQ)

» MapReduce (eg Apache Spark framework)

» Event-driven
— Single-threaded (eg Vert.x framework)
— Multi-threaded (eg CompleteableFuture framework, Kafka framework)

Grid Computing (eg Apache Ignite, Hazelcast)
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Shared Mutable State

What does this mean?
» Shared: data storage that is used by more than one thread
» Mutable: data storage that is updated at some point with new data

 State: data storage with data

EACH word matters because eliminating ANY word stops concurrency being difficult
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Shared Mutable STATE

Get rid of state and you have no concurrency problem
* No state is the jackpot of concurrency management

 Unfortunately not many applications have no state
— You can push all the state to a datastore, which makes the application dependent on coordination to that datastore
instead of coordination internally

— But that might be ideal and simple and fast enough for your application, so do consider it
— These are different high level concurrency models, eg CRUD, CQRS.
— But essentially the same as synchronizing all access+updates to shared state

» But you can certainly decouple the stateful parts of the application from the stateless parts

— So letting you scale each part appropriately
— Stateless scaling is easy, you just add hardware resources and use copies of the stateless components to utilise
those resources

“w 11
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Shared MUTABLE State

If the data item doesn’t need changing, there is no concurrency problem
« Immutable data is great, you can use it across all threads with no problems
* You can also use data that was mutated but will no longer be mutated after some point (eg after you initialized your

application or built the structure) — effectively immutable

— You may need to flush changes to “main” memory and fault the changes to all existing threads, but after that the
data is the same as immutable

— The JIT might not be able to optimize as much as for actually immutable data, but that's usually a small matter
compared to having to apply concurrency control to access the data
* Immutable state is not as easy to get right as you might expect
— Fields should be final and private
— And if a field references an object rather than primitive data, that object needs to be immutable too
» Immutable state objects are very efficient to use, but you often find you need to change the state, and to do that you have to
make a new object — which is a source if inefficiency and adds pressure to the garbage collections.
— Efficiency for concurrency usually far outweighs the inefficiency of needing copies
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SHARED Mutable State

If the data item is not shared across threads, there is no concurrency problem

« |t's thread local state, and sequential programming that we’re all comfortable with applies

g
#hcomtechnology -- presenter: Jack Shirazi -- -- hotels.com -- expedia.com ||“ 13



Shared Mutable State

Some of the high level concurrency models listed earlier are designed to avoid one of the words

» Shared Immutable State: Functional Programming; MapReduce

» Unshared Mutable State: Actors; Single-threaded Event-driven; Data Parallelism; MapReduce

“w 14
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Example

To show the differences, we’ll use a consistent simple real world example

» BusinessProcess object with identity and state and some processing capability
— Processing takes current state and new information and does something to produce the new state

» Objects accessed by identity (so will use hash maps as natural storage)

* New information can be anything, for my examples I'll use a double
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Single Threaded

private Map<String,Business> data = new HashMap<>() ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlace (update) ;

}

"w
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Single Threaded

private Map<String,Business> data = new HashMap<>() ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlace (update) ;

}
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Pessimistic Locking

private Map<String,Business> data = new HashMap<>() ;

public synchronized void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public synchronized void processUpdate (String identity, double update) |
Business biz = this.data.get (identity);
biz.processValueInPlace (update) ;

}
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Pessimistic Locking

Benefits

» Simple to understand and reason about: single-threaded reasoning is what we do really well
» Easy to write single-threaded code

» JVM understands locks, especially monitors, and can optimize them well

Disadvantages
» Single-threaded execution - the higher the concurrency the more time threads are blocked
* Letting the datastructure escape the class (eg "return this.data“) is an easy bug to make

« Difficult to minimize lock time without adding bugs

g
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Single Threaded

private Map<String,Business> data = new HashMap<>() ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlace (update) ;

}
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Optimistic Transaction — Bugl

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<> () ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlace (update); //BUG!! but could fix in Business class

}

"w
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Optimistic Transaction — Bug?2

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<> () ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
this.data.put (identity, biz.processValueReturnCopy (update)); //BUG!!

}
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expedia.com “ @ 25

#hcomtechnology -- presenter: Jack Shirazi -- -- hotels.com --



Optimistic Transaction

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<> () ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
this.data.computelfPresent (identity, (k,v)->v.processValueldempotent (update))

}
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Example Business Processing

public void processValueInPlace (double update) {
this.state += update; //BUG for unsynchronized concurrent update

}

public Business processValueldempotent (double update) {
return new Business(this.identity, this.state + update);

}

public void processValuelInPlaceConcurrent (double update) {
this.state.addAtomic (update) ;
}

“ﬂ 27
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Optimistic Transaction — Software Transactional Memory

class BusinessWrapper {AtomicReference<ImmutableBusiness> biz; ... }

ConcurrentMap<String,BusinessWrapper> data = new ConcurrentHashMap<> () ;

public void processUpdate (String identity, double updatel, double u2?) {
ImmutableBusiness wrapper = this.data.get (identity);

boolean done = false;
while (!done) {
ImmutableBusiness currentBiz = wrapper.biz.get();

ImmutableBusiness newBiz = currentBiz.processValueReturningNew (update, uZ));
done = wrapper.biz.compareAndSet (currentBiz , newBiz);

“ﬂ 28
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Example ImmutableBusiness Processing

// No synchronization nor Atomics needed, just simple processing

public ImmutableBusiness processValueReturningNew (double update, double u2) {
double newStatel = this.statel + update;
double newState? = this.state2 + u2;
return new ImmutableBusiness(this.identity, newStatel, newState2);

}
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Optimistic Transaction

Benefits
+ Eliminates explicit synchronization problems (lock contention, scope)

» Much higher chance of avoiding blocking, so higher throughput across all threads

Disadvantages

* Write collisions mean retries

Retries can be costly, and they're unpredictable

Difficult to understand and work through — easy to get wrong and introduce bugs

Retry code must be idempotent — easy to get wrong and introduce bugs

More transient objects in general transactional implementations, so more GC pressure
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Single Threaded

private Map<String,Business> data = new HashMap<>() ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlace (update) ;

}
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Queue To A Single Consumer Thread

public class SingleThreadConsumer extends SingleThreaded implements Runnable {
//Just use the Single Threaded implementation in the consumer
//and add in queue processing capability

public void run() {
Business biz = takeFromQueue () ;
switch (biz.operationType()) {
case STORE: this.store(biz); break;
case PROCESS: this.processUpdate(biz.identity (), biz.value());, break;

case FLUSH: synchronized(this) {this.store(biz);}; break;
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Queue On A Single Thread

public void store(Business biz) {
addToQueue (b1z) ;
}

public void processUpdate (String identity, double update) {
Business biz = new Business(identity, update, PROCESS) ;
addToQueue (b1z) ;

}
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Queue On A Single Thread

Benefits

* No shared state

» Decouples producers and consumers; Simple fault tolerance
* Inherent asynchronous processing support

» Easy to convert to distributed implementation

» Lowest latency of updates if you can use “fire and forget”

Disadvantages
* Aot of infrastructure
 Additional latency from queueing if you need to confirm the update has completed/get the new state

+ Unidirectional is straightforward, bidirectional communication is harder

g
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Single Threaded

private Map<String,Business> data = new HashMap<>() ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlace (update) ;

}
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Partitioned Data

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<> () ;

public void store(Business biz) {
this.data.put(biz.identity (), biz);

}

//The partitioning is in the Business class, not here ... here it’s simple
public void processUpdate (String identity, double update) {
Business biz = this.data.get (identity);
biz.processValueInPlacePartitioned (update) ;

}

“ﬂ 38
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Example Business Processing

//Example here just uses 3 partitions for simplicity
//and non-balanced partitioning, but obviously it can all be improved
//See Striped64 implementation for a very sophisticated implementation
public void processValuelInPlacePartitioned (double update) {
switch (Thread.currentThread () .getId()%$3) {

case 0: this.statel.addAtomic (update); break;

case 1: this.stateZ.addAtomic (update); break;

case 2: this.state3.addAtomic (update); break;
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Partitioned Data

Benefits
» The fastest concurrent updates out there (eg LongAdder)

 Also used for the fastest distributed systems (eg Cassandra)

Disadvantages

« So many things to think about to get it right, easy to have bugs

g
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How to think about these four patterns

» Pessimistic Locking is easy, simple to understand and probably fast enough at reasonable concurrency

» Optimistic Transaction is most likely the way to go if you need to be able to handle higher concurrency, but you need to work
hard to avoid subtle bugs

+ Partitioned Data is the fastest highly concurrent option but really hard to achieve so a very long way to go to get your
implementation mature (ie low on bugs)

» Sending to a Queue is the easiest for adding asynchronous support and also for adding distributed support

But...

g
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How to think about these four patterns

... These four patterns are NOT mutually exclusive

» ConcurrentHashMap uses Optimistic Transactions to enable updates to be shared at the highest rates, Partitioned Data
to increase multi-threaded throughput, and Pessimistic Locking where unlikely, infrequent or complex actions need to be
processed

» The Actor Model uses Sending to a Queue together with Partitioned Data to enable individual Actors to operate serial
execution, while allowing multiple different actors to execute concurrently

» Functional Programming in Java uses the underlying ForkJoinPool to execute the pipelines; ForkJoinPool is implemented
using all four patterns together (Sending to a Queue, Partitioned Data, Optimistic Transactions and Pessimistic Locking),
using each pattern where it's strength is most appropriately applied

g
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1. Determine Shared Mutable Data Early

This is NOT premature optimization

 You should try to identify all potential shared mutable state for your application as early as possible
— And guesstimate the level of concurrency for reads and for writes against that data
— Including for the general data store and for specific data items

» There are fundamental design and architectural decisions you need to make based on this information
— These are often very expensive to correct later

g
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2. Can You Eliminate Any Word: Shared|Mutable|State?

As mentioned previously, eliminate one word, eliminate concurrency as a problem

* This is the ideal solution

» And if you can'’t eliminate it, can you at least use something else that is built to handle it?
— That’s why there are a zillion different Datastores, it's much easier to use one than build in your own management

“w 45
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3. Can A Concurrency Model Do It For You?

Many of the common ones are gaining greater use despite being really hard to debug, often difficult to understand,
and less efficient than do-it-yourself, for exactly this reason.

The most common Concurrency Models that reduce and often eliminate your need to use one of the Concurrency
Data Control Patterns are (in alphabetical order since | have no idea about our community uptake):

» Actors
» Functional Programming
» MapReduce

» Single-threaded Event-driven

g
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4. Understand Concurrency As Best You Can

If the last couple of decision points means you still need to build, you need to get as best an understanding of
concurrency subtleties as you can.

Even a decade of use doesn’t stop new concurrency bugs being found in the Fork-Join framework, despite it being
open source and having some of the best concurrency experts in the world working on it

g
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5. Encapsulate and Minimize Touchpoints

You decide you need to build it? Remember

» 1. The patterns are not mutually exclusive, choose according to need, try to keep it as simple as possible

2. Good OOP helps - encapsulate and present component APIs for client classes to use, encapsulation is spectacularly
important for maintainable concurrency management

3. Avoid letting any data structures escape the class, that’s a recipe for creating concurrency bugs
— Eg don’t have getMap () {return mySharedMap; }

4. Use immutable (final everything) classes returning new instances for any change to minimize bugs creeping in during
maintenance

— It's fewer things that can get messed up, even if it is higher overhead
— And the JIT can optimize concurrent use of immutable instances usage pretty well

5. Use “persistent” (Clojure style) or other effectively copy-on-write classes to avoid collections getting corrupted

6. Use mature data concurrent structures (eg ConcurrentHashMap) even if you have to mangle your model a bit and take an
efficiency hit

— But make sure you understand how to use them

g
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 \Who Am I? Jack Shirazi
E . Working in Performance and Reliability
Engineering Team at Hotels.com

— Part of Expedia Group, handling over
$100billion in bookings annually

— World’s largest travel agency
* Founder of JavaPerformanceTuning.com

 Author of Java Performance Tuning
(O'Reilly)

 Published over 60 articles on Java
Performance Tuning & a monthly
newsletter for 15 years & around 10 000

tuning tips )
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