
Don't Make it a Race
The Four Common Concurrency Data Control Patterns



2

What You Will Learn

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

• The overall concurrency landscape

• The common ways to handle shared mutable state

– With detailed examples

• How it all hangs together

• Great places to go on holiday



3

Topic

Concurrency Low/Medium/High level

Shared Mutable State

Four Concurrency Control Patterns

Pessimistic Locking

Optimistic Transaction

Queue To A Single Thread

Partitioning The Data

Putting it all together

Agenda

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com



4

Concurrency 
Low/Medium/High 
Levels

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Picture of Bellagio from Vincent Radikahl travelling in Italy

https://www.instagram.com/p/BdVkne9F-4N/?taken-by=hotelsdotcom



5

Concurrency patterns|models|frameworks|techniques?

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

There are 3 levels

• High level – Models (how you will write your programs)

– Eg

– Threads & Locks

– Actors

– Implemented with frameworks

• Medium level – Patterns (how you will decide to handle shared mutable state)

– Discussed in detail in this talk

• Low Level – basic concurrency programming building blocks and techniques (how to build stuff from scratch)

– Eg

– Synchronized blocks

– StampedLock



6

Low Level: Concurrency Building Blocks

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

So many

• Runnable | Thread | ThreadGroup | synchronized | Object.wait() | Object.notify() | Object.notifyAll() | NIO | 
java.util.concurrent.locks | volatile | java.util.concurrent.atomic | java.util.concurrent | some of java.lang.invoke (eg
VarHandles) | @Contended

• Collections

– java.util | Clojure collections (all available in Java) | PCollections | Chronicle | Agrona | Guava | Eclipse | Fastutil | 
Vavr | Apache | Trove | ObjectLayout/StructuredArray | Roaring Bitmaps | LMAX Disruptor | JCTools | high-scale-lib

• Doubtless many more



7

Medium Level: Concurrency Patterns

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Covered in this talk

• Built from those low level building blocks

• These are used to define the core data management in high level model frameworks

• Not mutually exclusive, often different ones used in the same framework/program for different data as appropriate

• Four common concurrency data control patterns: 

– pessimistic locking

– optimistic transactions

– queue to a single thread

– partitioning the data



8

High Level: Concurrency Models

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

10 Common Concurrency Models (including the 7 from “Seven Concurrency Models in Seven Weeks” Paul Butcher)

• DIY - Threads & Locks (eg Thread class, Runnable, synchronized, java.util.concurrent.locks, Executors)

• Functional Programming (eg Streams & Lambda expressions, RxJava)

• Atomic & Thread-local (eg java.util.concurrent.atomic, Clojure collections, VarHandle, SoftwareTransactionalMemory)

• Actors (eg Akka framework)

• Communicating Sequential Processes (eg ParallelUniverse’s Quasar framework, Project Loom, Apache Camel)

• Data Parallelism (eg using GPUs, “Java on the GPU” Dmitry Aleksandrov https://www.youtube.com/watch?v=BjdYRtL6qjg)

• MapReduce (eg Apache Spark framework)

• Event-driven

– Single-threaded (eg Vert.x framework)

– Multi-threaded (eg CompleteableFuture framework, Kafka framework)

• Grid Computing (eg Apache Ignite, Hazelcast)



9

Shared Mutable 
State

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Picture from Vicky travelling in Bosnia and Herzegovina

https://www.instagram.com/p/BdGPZPWFDQr/?taken-by=hotelsdotcom



10

Shared Mutable State

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

What does this mean?

• Shared: data storage that is used by more than one thread

• Mutable: data storage that is updated at some point with new data

• State: data storage with data

EACH word matters because eliminating ANY word stops concurrency being difficult



11

Shared Mutable STATE

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Get rid of state and you have no concurrency problem

• No state is the jackpot of concurrency management

• Unfortunately not many applications have no state

– You can push all the state to a datastore, which makes the application dependent on coordination to that datastore 
instead of coordination internally

– But that might be ideal and simple and fast enough for your application, so do consider it

– These are different high level concurrency models, eg CRUD, CQRS.

– But essentially the same as synchronizing all access+updates to shared state

• But you can certainly decouple the stateful parts of the application from the stateless parts

– So letting you scale each part appropriately

– Stateless scaling is easy, you just add hardware resources and use copies of the stateless components to utilise 
those resources



12

Shared MUTABLE State

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

If the data item doesn’t need changing, there is no concurrency problem

• Immutable data is great, you can use it across all threads with no problems

• You can also use data that was mutated but will no longer be mutated after some point (eg after you initialized your 
application or built the structure) – effectively immutable

– You may need to flush changes to “main” memory and fault the changes to all existing threads, but after that the 
data is the same as immutable

– The JIT might not be able to optimize as much as for actually immutable data, but that’s usually a small matter 
compared to having to apply concurrency control to access the data

• Immutable state is not as easy to get right as you might expect

– Fields should be final and private

– And if a field references an object rather than primitive data, that object needs to be immutable too

• Immutable state objects are very efficient to use, but you often find you need to change the state, and to do that you have to 
make a new object – which is a source if inefficiency and adds pressure to the garbage collections.

– Efficiency for concurrency usually far outweighs the inefficiency of needing copies



13

SHARED Mutable State

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

If the data item is not shared across threads, there is no concurrency problem

• It’s thread local state, and sequential programming that we’re all comfortable with applies



14

Shared Mutable State

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Some of the high level concurrency models listed earlier are designed to avoid one of the words

• Shared Immutable State: Functional Programming; MapReduce

• Unshared Mutable State: Actors; Single-threaded Event-driven; Data Parallelism; MapReduce



15

Four Concurrency 
Control Patterns

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  --

expedia.com

Picture in Baraza from Fred Fisher travelling in Zanzibar, Tanzania 

https://www.instagram.com/p/BiPyFy3g27S/?taken-by=hotelsdotcom



16

Example

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

To show the differences, we’ll use a consistent simple real world example

• BusinessProcess object with identity and state and some processing capability

– Processing takes current state and new information and does something to produce the new state

• Objects accessed by identity (so will use hash maps as natural storage)

• New information can be anything, for my examples I’ll use a double



17

Single Threaded

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private Map<String,Business> data = new HashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);

}



18

Pessimistic   
Locking

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Picture of Antelop Canyon from Povilas travelling in Arizona, USA 

https://www.instagram.com/p/BhMrwOUAzSL/?taken-by=hotelsdotcom



19

Single Threaded

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private Map<String,Business> data = new HashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);

}



20

Pessimistic Locking

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private Map<String,Business> data = new HashMap<>();

public synchronized void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public synchronized void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);

}



21

Pessimistic Locking

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Benefits

• Simple to understand and reason about: single-threaded reasoning is what we do really well

• Easy to write single-threaded code

• JVM understands locks, especially monitors, and can optimize them well

Disadvantages

• Single-threaded execution - the higher the concurrency the more time threads are blocked

• Letting the datastructure escape the class (eg "return this.data“) is an easy bug to make

• Difficult to minimize lock time without adding bugs



22

Optimistic 
Transaction

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  --

expedia.com

Picture of Koh Hong from Stephan Audiger travelling in Krabi, Thailand 

https://www.instagram.com/p/Be3i5X0FveZ/?taken-by=hotelsdotcom



23

Single Threaded

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private Map<String,Business> data = new HashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);

}



24

Optimistic Transaction – Bug1

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);  //BUG!! but could fix in Business class

}



25

Optimistic Transaction – Bug2

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

this.data.put(identity, biz.processValueReturnCopy(update));  //BUG!!

}



26

Optimistic Transaction

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

this.data.computeIfPresent(identity, (k,v)->v.processValueIdempotent(update)); 

}



27

Example Business Processing

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

public void processValueInPlace(double update) {

this.state += update; //BUG for unsynchronized concurrent update

}

public Business processValueIdempotent(double update) {

return new Business(this.identity, this.state + update);

}

public void processValueInPlaceConcurrent(double update) {

this.state.addAtomic(update);

}



28

Optimistic Transaction – Software Transactional Memory

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

class BusinessWrapper {AtomicReference<ImmutableBusiness> biz; ... }

ConcurrentMap<String,BusinessWrapper> data = new ConcurrentHashMap<>();

public void processUpdate(String identity, double update1, double u2) {

ImmutableBusiness wrapper = this.data.get(identity); 

boolean done = false; 

while (!done) {

ImmutableBusiness currentBiz = wrapper.biz.get();

ImmutableBusiness newBiz = currentBiz.processValueReturningNew(update, u2));

done = wrapper.biz.compareAndSet(currentBiz , newBiz);

}

}



29

Example ImmutableBusiness Processing

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

// No synchronization nor Atomics needed, just simple processing

public ImmutableBusiness processValueReturningNew(double update, double u2) {

double newState1 = this.state1 + update;

double newState2 = this.state2 + u2;

return new ImmutableBusiness(this.identity, newState1, newState2);

}



30

Optimistic Transaction

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Benefits

• Eliminates explicit synchronization problems (lock contention, scope)

• Much higher chance of avoiding blocking, so higher throughput across all threads

Disadvantages

• Write collisions mean retries

• Retries can be costly, and they’re unpredictable

• Difficult to understand and work through – easy to get wrong and introduce bugs

• Retry code must be idempotent – easy to get wrong and introduce bugs

• More transient objects in general transactional implementations, so more GC pressure



31

Queue To A 
Single Thread

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  --

expedia.com

Picture of St. Paul's Cathedral from Jo Toader travelling in London, UK 

https://www.instagram.com/p/BfB2RU-lN9j/?taken-by=hotelsdotcom



32

Single Threaded

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private Map<String,Business> data = new HashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);

}



33

Queue To A Single Consumer Thread

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

public class SingleThreadConsumer extends SingleThreaded implements Runnable {

//Just use the Single Threaded implementation in the consumer

//and add in queue processing capability

...

public void run() {

Business biz = takeFromQueue();

switch(biz.operationType()) {

case STORE: this.store(biz); break;

case PROCESS: this.processUpdate(biz.identity(), biz.value()); break;

case FLUSH: synchronized(this) {this.store(biz);}; break;

}

}



34

Queue On A Single Thread

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

public void store(Business biz) {

addToQueue(biz);

}

public void processUpdate(String identity, double update) {

Business biz = new Business(identity, update, PROCESS);

addToQueue(biz);

}



35

Queue On A Single Thread

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Benefits

• No shared state

• Decouples producers and consumers; Simple fault tolerance

• Inherent asynchronous processing support

• Easy to convert to distributed implementation

• Lowest latency of updates if you can use “fire and forget”

Disadvantages

• A lot of infrastructure

• Additional latency from queueing if you need to confirm the update has completed/get the new state

• Unidirectional is straightforward, bidirectional communication is harder



36

Partitioning
The Data

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  --

expedia.com

Picture of Kotor Bay from Denise travelling in Montenegro 

https://www.instagram.com/p/Bd3E2gKlvZS/?taken-by=hotelsdotcom



37

Single Threaded

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private Map<String,Business> data = new HashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlace(update);

}



38

Partitioned Data

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

private ConcurrentMap<String,Business> data = new ConcurrentHashMap<>();

public void store(Business biz) {

this.data.put(biz.identity(), biz);

}

//The partitioning is in the Business class, not here ... here it’s simple

public void processUpdate(String identity, double update) {

Business biz = this.data.get(identity);

biz.processValueInPlacePartitioned(update);

}



39

Example Business Processing

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

//Example here just uses 3 partitions for simplicity

//and non-balanced partitioning, but obviously it can all be improved

//See Striped64 implementation for a very sophisticated implementation

public void processValueInPlacePartitioned(double update) {

switch(Thread.currentThread().getId()%3) {

case 0: this.state1.addAtomic(update); break;

case 1: this.state2.addAtomic(update); break;

case 2: this.state3.addAtomic(update); break;

}

}



40

Partitioned Data

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Benefits

• The fastest concurrent updates out there (eg LongAdder)

• Also used for the fastest distributed systems (eg Cassandra)

Disadvantages

• So many things to think about to get it right, easy to have bugs



41

Putting it 
all together

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  --

expedia.com

Picture from Enrica Wong travelling in Saint Lucia 

https://www.instagram.com/p/BnWoyhmAkvt/?taken-by=hotelsdotcom



42

How to think about these four patterns

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

• Pessimistic Locking is easy, simple to understand and probably fast enough at reasonable concurrency

• Optimistic Transaction is most likely the way to go if you need to be able to handle higher concurrency, but you need to work
hard to avoid subtle bugs

• Partitioned Data is the fastest highly concurrent option but really hard to achieve so a very long way to go to get your 
implementation mature (ie low on bugs)

• Sending to a Queue is the easiest for adding asynchronous support and also for adding distributed support

But …



43

How to think about these four patterns

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

… These four patterns are NOT mutually exclusive

• ConcurrentHashMap uses Optimistic Transactions to enable updates to be shared at the highest rates, Partitioned Data
to increase multi-threaded throughput, and Pessimistic Locking where unlikely, infrequent or complex actions need to be 
processed

• The Actor Model uses Sending to a Queue together with Partitioned Data to enable individual Actors to operate serial 
execution, while allowing multiple different actors to execute concurrently

• Functional Programming in Java uses the underlying ForkJoinPool to execute the pipelines; ForkJoinPool is implemented 
using all four patterns together (Sending to a Queue, Partitioned Data, Optimistic Transactions and Pessimistic Locking), 
using each pattern where it’s strength is most appropriately applied



44

1. Determine Shared Mutable Data Early

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

This is NOT premature optimization

• You should try to identify all potential shared mutable state for your application as early as possible

– And guesstimate the level of concurrency for reads and for writes against that data

– Including for the general data store and for specific data items

• There are fundamental design and architectural decisions you need to make based on this information

– These are often very expensive to correct later



45

2. Can You Eliminate Any Word: Shared|Mutable|State?

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

As mentioned previously, eliminate one word, eliminate concurrency as a problem

• This is the ideal solution

• And if you can’t eliminate it, can you at least use something else that is built to handle it?

– That’s why there are a zillion different Datastores, it’s much easier to use one than build in your own management



46

3. Can A Concurrency Model Do It For You? 

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

Many of the common ones are gaining greater use despite being really hard to debug, often difficult to understand, 
and less efficient than do-it-yourself, for exactly this reason.

The most common Concurrency Models that reduce and often eliminate your need to use one of the Concurrency 
Data Control Patterns are (in alphabetical order since I have no idea about our community uptake):

• Actors

• Functional Programming

• MapReduce

• Single-threaded Event-driven



47

4. Understand Concurrency As Best You Can

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

If the last couple of decision points means you still need to build, you need to get as best an understanding of 
concurrency subtleties as you can. 

Even a decade of use doesn’t stop new concurrency bugs being found in the Fork-Join framework, despite it being 
open source and having some of the best concurrency experts in the world working on it



48

5. Encapsulate and Minimize Touchpoints

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  -- expedia.com

You decide you need to build it? Remember

• 1. The patterns are not mutually exclusive, choose according to need, try to keep it as simple as possible

• 2. Good OOP helps - encapsulate and present component APIs for client classes to use, encapsulation is spectacularly 
important for maintainable concurrency management

• 3. Avoid letting any data structures escape the class, that’s a recipe for creating concurrency bugs

– Eg don’t have getMap(){return mySharedMap;}

• 4. Use immutable (final everything) classes returning new instances for any change to minimize bugs creeping in during 
maintenance

– It’s fewer things that can get messed up, even if it is higher overhead

– And the JIT can optimize concurrent use of immutable instances usage pretty well

• 5. Use “persistent” (Clojure style) or other effectively copy-on-write classes to avoid collections getting corrupted

• 6. Use mature data concurrent structures (eg ConcurrentHashMap) even if you have to mangle your model a bit and take an 
efficiency hit

– But make sure you understand how to use them



49

Who Am I? Jack Shirazi

#hcomtechnology -- presenter: Jack Shirazi  -- -- hotels.com  --

expedia.com

Picture from Alessia travelling in Naples, Italy 

https://www.instagram.com/p/BkS_yvDlbxd/?taken-by=hotelsdotcom

• Working in Performance and Reliability 
Engineering Team at Hotels.com

– Part of Expedia Group, handling over 
$100billion in bookings annually

– World’s largest travel agency

• Founder of JavaPerformanceTuning.com

• Author of Java Performance Tuning 
(O'Reilly)

• Published over 60 articles on Java 
Performance Tuning & a monthly 
newsletter for 15 years & around 10 000 
tuning tips


