
1 @luisw19

GraphQL as an
alternative
approach to
REST

About me
Luis Weir
CTO at Capgemini UK Oracle
Ace Director & Groundbreaker Ambassador

luis.weir@capgemini.com
uk.linkedin.com/in/lweir
http://www.soa4u.co.uk

apiplatform.cloud/
Released Q2 2018

tinyurl.com/eapim18
Goes to Print Q2 2019

• The 7 Deadly Sins of API Design
• Setting the vision, strategy and direction — the CTO’s role
• How can you design, deploy and manage your APIs?
• The Spotify's Engineering Culture. My interpretation and summary
• A comparison of API Gateways communication styles
• Is BPM Dead, Long Live Microservices?

• Five Minutes with Luis Weir
• 2nd vs 3rd Generation API Platforms - A Comprehensive

Comparison
• Podcast: Are Microservices and APIs Becoming SOA 2.0?
• 3rd-Generation API Management: From Proxies to Micro-Gateways
• Oracle API Platform Cloud Service Overview

Latest articles:

@luisw19
Want the slides? I’ll share via:

mailto:luis.weir@capgemini.com
http://uk.linkedin.com/in/lweir
http://www.soa4u.co.uk/
http://apiplatform.cloud/
https://tinyurl.com/eapim18
http://www.soa4u.co.uk/2018/10/the-se7en-deadly-sins-of-api-design.html
https://www.information-age.com/vision-strategy-direction-ctos-123476102/
https://www.information-age.com/design-deploy-manage-apis-123476125/
http://www.soa4u.co.uk/2018/07/the-spotifys-engineering-culture-my.html
http://www.soa4u.co.uk/2018/05/a-comparison-of-push-vs-pull-approaches.html
http://www.soa4u.co.uk/2018/02/is-bpm-dead-long-live-microservices.html
https://www.rubiconred.com/five-minutes-luis-weir/
http://www.soa4u.co.uk/2017/11/2nd-vs-3rd-generation-api-platforms.html
https://blogs.oracle.com/developers/podcast-are-microservices-and-apis-becoming-soa-20-v2
http://www.oracle.com/technetwork/articles/soa/weir-3rd-gen-api-mgmt-3787102.html
http://www.soa4u.co.uk/2017/05/oracle-api-platform-cloud-service.html

3 @luisw19© 2018 Capgemini. All rights reserved.

GraphQL as an alternative appraoch to REST

GraphQL – context & key
concepts

GraphQL vs REST PoV

01

03

Demos02

Conclusions04

4 @luisw19

Application Programming Interfaces (APIs) are doors to
information and functionality.

5 @luisw19

5

But some doors can be unfit for purpose…

source: https://imgur.com/a/J3ttg

01

https://imgur.com/a/J3ttg

6 @luisw19

6

Why GraphQL?

Source: https://dev-blog.apollodata.com/graphql-vs-rest-
5d425123e34b by Sashko Stubailo

01

https://dev-blog.apollodata.com/graphql-vs-rest-5d425123e34b
https://dev-blog.apollodata.com/@stubailo?source=post_header_lockup

7 @luisw19

7

GraphQL - Background

• Created by Facebook in 2012 to get around a common constraints in
the REST approach when fetching data

• Publicly released in 2015
• GraphQL Schema Definition Language (SDL) added to spec in Feb’18

Latest release: http://facebook.github.io/graphql
Latest draft: http://facebook.github.io/graphql/draft/

https://GraphQL.org

01

http://facebook.github.io/graphql
http://facebook.github.io/graphql/draft/
https://graphql.org/

8 @luisw19

8

GraphQL – What is it NOT?

a query language
for a databases

in spite of its name, it
has nothing to do with
Graphs DBs

A silver Bullet

necessarily a
replacement for REST.
Both can work together

01

Roy from the IT Crowed à

https://www.imdb.com/title/tt0487831/

9 @luisw19

9

GraphQL – What is it then?

A consumer oriented query language, a strongly typed schema
language and a runtime to implement GraphQL services.

Define Schema

type Country {
id: ID!
name: String!
code: String!

}
type query {

countries:
[Country]
}

GraphQL Service GraphQL Client

Quickly write and
run queries

{
getCountries(name:"great")
{
name

}
}

GraphQL Client

Get exactly what
you asked for
{
"data": {
"countries": [
{
"name": "United

Kingdom"
}

]
}

}

01

10 @luisw19

10

Who is using it?
Lots of organisations are embracing GraphQL: http://graphql.org/users

01

http://graphql.org/users

11 @luisw19

11

Increasing rapidly in Popularity

https://trends.google.com/trends/explore?date=2016-01-01%202018-12-01&q=GraphQL,REST%20API,OData

GraphQL REST API OData

Jan 2016 Dec 2018

01

https://trends.google.com/trends/explore?date=2016-01-01%202018-12-01&q=GraphQL,REST%20API,OData

12 @luisw19

12

Let’s put it into perspective

https://trends.google.com/trends/explore?date=2004-01-10%202018-11-30&q=GraphQL,REST%20API,OData,WSDL

trend

WSDL

01

GraphQL REST API OData

Feb 2004 Sep 2018

https://trends.google.com/trends/explore?date=2004-01-10%202018-11-30&q=GraphQL,REST%20API,OData,WSDL

13 @luisw19

13

GraphQL – Key Concepts

There are 5 key characteristics of GraphQL that are
important to understand:

Hierarchical

Queries as
hierarchies of
data definitions,
shaped just how
data is expected
to be retuned.

1
View-centric

By design built to
satisfy frontend
application
requirements.

2
Strongly-typed

A GraphQL
server defines a
specific type
system. Queries
are executed
within this
context.

3 4
Introspective

The type system
itself is
queryable. Tools
are built around
this capability.

5
Version-Free

GraphQL takes a
strong opinion
on avoiding
versioning by
providing the
tools for the
continuous
evolution.

01

14 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

14

GraphQL – Anatomy
01

15 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

15

GraphQL – Anatomy

Effectively the blueprint of
a GraphQL API, it defines
the Types, Queries and
Mutations supported in a
GraphQL service

1

01

16 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

16

GraphQL – Anatomy

Object, Input, Scalar, Enumeration,
Interfaces and Unions are all types
to define data structures, which are
used in Operation types.

2

01

17 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

17

GraphQL – Anatomy

Entry point for operations that fetch
data (read / search). Note that a
single Query type can define
multiple query operations.

3

01

18 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

18

GraphQL – Key Concepts

Entry point for operations that
create/update data via a GraphQL
service. Note that a single Mutation
type can define multiple mutation
operations.

4

01

19 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

19

GraphQL – Anatomy

new Pub/sub system for near-
realtime updates. Unlike queries or
mutations, it can deliver more than
one result via push.

01

5

20 @luisw19

GraphQL
Server

Implementation

GraphQL
Schema
Definition
Language

GraphQL
Schema

(Data) Types
(Object, Input, Scalar,
Enum, Interface, Union)

Queries
(operation type)

Mutations
(operation type)

Resolvers
f(x), f(x), f(x)

Subscriptions
(operation type)

Define
Types

have

have

have

Execute

20

GraphQL – Anatomy

Functions that define how each
field, within a GraphQL Query or
Operation is to be acted upon.

6

01

21 @luisw19

21

GraphQL Schema Cheat Sheet

https://github.com/sogko/graphql-schema-language-cheat-sheet

01

https://github.com/sogko/graphql-schema-language-cheat-sheet

22 @luisw19

22

Browser

GraphQL Client

Simple GraphQL Query Demo (I) - Mock

{
query

}

GraphQL Server:
Apollo/Express

GraphQL Service

Graphiql

GraphQL Schema

GraphQL Endpoint

http://.../graphiql

Query Operation {JSON}
[HTTP/POST]

{JSON}
{
data
}

https://github.com/luisw19/graphql-samples/tree/master/graphql-
countries-part1

02

Apollo Express: https://github.com/apollographql/apollo-server

https://github.com/luisw19/graphql-samples/tree/master/graphql-countries-part1
https://github.com/apollographql/apollo-server

23 @luisw19

23

Browser

GraphQL Client

Simple GraphQL Query Demo (II) – REST Backend

{
query

}

GraphQL Server:
Apollo/Express

GraphQL Service

Graphiql

GraphQL Schema

GraphQL Endpoint

Query Operation {JSON}
[HTTP/POST]

{JSON}
{
data
}

https://github.com/luisw19/graphql-samples/tree/master/graphql-
countries-part2

[HTTP/GET]
https://restcountries.eu/rest/v2/{resource}

{JSON}

REST COUNTRIES

02

https://github.com/luisw19/graphql-samples/tree/master/graphql-countries-part2
https://restcountries.eu/

24 @luisw19

24

Docker Container

Browser

GraphQL Client

Simple GraphQL Query Demo (III) - Mutation

{
query

}

GraphQL Server:
Apollo/Express

GraphQL Service

Graphiql

GraphQL Schema

GraphQL Endpoint

Query Operation {JSON}
[HTTP/POST]

{JSON}
{
data
}

https://github.com/luisw19/graphql-samples/tree/master/graphql-
countries-part3

[HTTP/GET]
https://restcountries.eu/rest/v2/{resource}

{JSON}

REST COUNTRIES

[HTTP/POST]
http://localhost:8000/{resource}

{JSON}

RequestBIN

02

https://github.com/luisw19/graphql-samples/tree/master/graphql-countries-part3
https://restcountries.eu/

25 @luisw19

25

Browser

GraphQL Client

Simple GraphQL Query Demo (IV) – API Composition

{
query

}

GraphQL Server:
Apollo/Express

GraphQL Service

Graphiql

GraphQL Schema

GraphQL Endpoint

Query Operation {JSON}
[HTTP/POST]

{JSON}
{
data
}

Not merged yet… (soon)

[HTTP/GET]
https://restcountries.eu/rest/v2/{resource}

{JSON}

REST COUNTRIES

[HTTP/POST]
https://www.google.co.uk/search?q={search}

{JSON}

02

https://restcountries.eu/

26 @luisw19

26

GraphQL vs REST

GraphQL REST

(++) Usage: Best usage experience
for developers (Graphiql is brilliant!)
(~) API-first design: Tooling evolving
(build a service to mock).

(~) Usage: depends on the quality of
API definition and documentation
(+) API-first design: good tools
available (e.g. Apiary, Swagger
Hub).

Developer Experience
(design and consume APIs)

Design

Try

Build

API Composition
(query data from multiple sources)

API

(++) Perfectly suited for API
composition. Each field can be fetch
(in parallel) from any source in a
single query.

(--) The nature of REST makes it difficult
to model resources that combine data
structures from multiple sources. HATEOAS
results in chattiness.

(++) Brilliant
(+) Good
(~) Neutral (it depends)
(-) Not very good
(--) It sucks!

API Gateway
(API routing, security, policies)

(-) Existing Gateways have rich
support for REST, not yet GraphQL -
but could be used. Alternative is to
use a GraphQL Service as API
Gateway.

(++) API Gateways take away from
REST endpoints common tasks (e.g.
OAuth, API keys, throttling,
security).

API

API Gateway

API API

03

27 @luisw19

27

GraphQL vs REST

GraphQL REST

(++) Brilliant
(+) Good
(~) Neutral (it depends)
(-) Not very good
(--) It sucks!

Caching

(--) Network: unsuitable as there is
a common URL for all operations.
(+) Service: possible based on
Object Type (even fields) and in
mem cache like REDIS.
(++) Network: Caching is easy as
each resource is a unique URI.
Common tools can be used (e.g.
CDNs).
(+) Service: It’s equally possible at
service Level.

N
et

w
or

k
C
ac

hi
ng

App
Cache

Client

Back
End

Resource

(-) Standards like OAuth, OpenID
can be used however because all ops
can be accessed by single URI,
custom authorisation is typically
required.

(++) Major standards (OAuth 2,
OpenId) supported by API Gateways
and frameworks.

Authentication / Authorization

Client

Resource

Authorisation
Server

1

2

Versioning

(++) Best practices are clear.
Versioning should be avoided and
tools are provided (e.g. deprecation
of fields) for continuous evolution.

(-) Best practice less clear, in
practice URI based versioning very
popular although not encouraged.

03

28 @luisw19

28

GraphQL vs REST (completely subjective!)

GraphQL

REST

+++++++ (7)
~ (1)
---- (4)

++++++++ (8)
~~ (2)
--- (3)

à But it will only improve!

03

29 @luisw1929© 2018 Capgemini. All rights reserved.29

1

3

Conclusions
Still early days but GraphQL has huge potential
GraphQL takes away many of the headaches of dealing with
REST from a client side -specially around complex queries
(against multiple sources). However tooling specially around
API Design and API Gateways is still evolving. So bear this in
mind when considering GraphQL.

2
GraphQL and REST can work nicely together
There are thousands of REST APIs (external and internal) and
REST still is a viable and popular option. Instead of boiling the
ocean, as Roy said, GraphQL is not necessarily a replacement
for REST. As shown in this presentation both can be
complementary and work together nicely.

There is no silver bullets –do your own research
There is tons of information available in the GraphQL
Communities page. Explore it, learn about it and adopt it
based on your own criteria and requirements. And hope this
presentation helps in the process!

04

https://graphql.org/community/

30 @luisw19

30

Resources

• GraphQL as an alternative approach to Rest recording at Devoxx’18 London
https://www.youtube.com/watch?v=hJOOdCPlXbU

• Github repository with the GraphQL tutorials
https://github.com/luisw19/graphql-samples

• Related articles:

• GraphQL with Oracle Database and node-oracledb by Christopher Jones
https://blogs.oracle.com/opal/demo%3a-graphql-with-node-oracledb

• GraphQL+OracleDB by Steven B
https://github.com/cloudsolutionhubs/oracledb-graphql-demo

https://www.youtube.com/watch?v=hJOOdCPlXbU
https://github.com/luisw19/graphql-samples
https://blogs.oracle.com/opal/demo:-graphql-with-node-oracledb

31 @luisw19

With more than 190,000 people, Capgemini is present in over 40 countries and
celebrates its 50th Anniversary year in 2018. A global leader in consulting, technology
and outsourcing services, the Group reported 2016 global revenues of EUR 12.5 billion.
Together with its clients, Capgemini creates and delivers business, technology and
digital solutions that fit their needs, enabling them to achieve innovation and
competitiveness. A deeply multicultural organization, Capgemini has developed its own
way of working, the Collaborative Business Experience™, and draws on Rightshore®, its
worldwide delivery model.

About Capgemini

Learn more about us at

www.capgemini.com

This message contains information that may be privileged or confidential and is
the property of the Capgemini Group.
Copyright © 2018 Capgemini. All rights reserved.

Rightshore® is a trademark belonging to Capgemini.

This message is intended only for the person to whom it is addressed. If you are not the intended recipient, you are not authorized to
read, print, retain, copy, disseminate, distribute, or use this message or any part thereof. If you receive this message in error, please
notify the sender immediately and delete all copies of this message.

