
© Zühlke 2018

Gearing architecture for agility
CodeMonsters Sofia 2018-11 // Christian Heger



© Zühlke 2018

Christian Heger

@zyklotrop
linkedin.com/in/christianheger/
christian.heger@zuehlke.com

Own image

Own image & dog

Own image



© Zühlke 2018

Software Architecture

- vs –

Agility
Wikipedia – User Jamain / CC BY-SA 3.0

Bundesarchiv, Bild 183-J0218-0011-001 / CC-BY-SA 3.0



© Zühlke 2018

Strategies for solving the 
technical aspects of 
software engineering

so that we can embrace 
Agile.



© Zühlke 2018

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

▪ Individuals and interactions over processes and tools
▪ Working software over comprehensive documentation
▪ Customer collaboration over contract negotiation
▪ Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.



© Zühlke 2018

Individuals and 
interactions over 
processes and tools

Jakob Dettner, Reiner Zenz - CC BY 2.0

Jakob Dettner, Reiner Zenz - CC BY 2.0



© Zühlke 2018

Architectural 
Decision! 
We’re all going to 
die!

Meteor: Public domain – NASA
Dino: CC0 / no attribution



© Zühlke 2018

Customer Zühlke

Engagement
Manager

Key User

Sponsor

Operations

Product
Owner

Project
Manager

Governance

…

Project
Manager Scope

Owner
&

Operation
Owner

UX
OwnerArchitecture

Owner

Quality
Owner

…

Users



© Zühlke 2018

Responding to change 
over following a plan



© Zühlke 2018

Discovery

Understand user 
needs and constraints

Alpha

Explore and 
validate solutions

Beta

Scale up for 
production

Live

Use, measure, 
improve, and expand

▪ Being useful
▪ Exposed to real users 
→ learning things

▪ Earning money

Cost of Change



© Zühlke 2018

Cost of Change

Discovery

Understand user 
needs and constraints

Alpha

Explore and 
validate solutions

Beta

Scale up for 
production

Live

Use, measure, 
improve, and expand

• Insufficient / badly structured tests

• Dependencies on a rampage

• Lack of coherence  lack of understanding



© Zühlke 2018

The Pyramid
Wikipedia – User Chales J. Sharp / CC BY-SA 3.0



© Zühlke 2018

The Cupcake
CC0 – no attribution



© Zühlke 2018

The Doomsday 
Cloud

Public Domain - R. Clucas 



© Zühlke 2018

Bounded Contexts
Image: Fernando de Noronha - CC BY 2.0

Visitor

Talk

Itinerary

Room
Schedule

Visitor Ticket

Payment

Invoice

Provider

Visitor

Dietary 
Restriction

Meal

Order



© Zühlke 2018

Customer collaboration 
over contract negotiation



© Zühlke 2018



© Zühlke 2018

Knowledge Crunching

Continuous Learning

Knowledge-Rich Design

Deep Models

Ubiquitous Language

Explanatory Models



© Zühlke 2018

Own Image



© Zühlke 2018

Natural language executable specification

Specification by Example // Gherkin DSL

Feature:
As the Professional
I can see audiogram changes when I change channel levels

Scenario: Increase level on channel #1
Given Hearing instrument “elia S” is mounted on left ear
And Hearing instrument is reset
And Baseline-Profile #5 is applied
When left channel #1 level is increased by 5dB
Then left audiogram at 120Hz is between 8dB and 10dB 

Scenario: Increase level on channel #2
…



© Zühlke 2018

Working software over 
comprehensive 
documentation



© Zühlke 2018

Unreadable Architecture
CC0 – no attribution Own Image



© Zühlke 2018

Architecture diagrams should be maps



© Zühlke 2018

Simon Browns C4 Architecture Model
“Diagrams are maps that help you navigating”



© Zühlke 2018

Structurizr
Create software architecture models based upon the C4 model using code



© Zühlke 2018

Keep track of where you have been 
going, and why –

so you don’t have to blindly trust 
or change prior decisions

In the context of <use case/user story u>, 

facing <concern c> we decided for <option o> 
and neglected <other options>,

to achieve <system qualities/desired 
consequences>, 

accepting <downside/undesired consequences>,

because <additional rationale>.

Architectural Decision Record



© Zühlke 2018

Books and sources



© Zühlke 2018

Books and sources

Specification By 
Example
Gojko Adzic

Domain Driven Design

Eric Evans

PACT 

docs.pact.io

ADM Models

Alex Bögli, Christian 
Straube, Christian Heger 
and many more
Zühlke Engineering

The Art of Unit Testing

Roy Osherove



© Zühlke 2018

Books and sources

Building Evolutionary 
Architectures
Neal Ford, Rebecca 
Parsons, Patrick Kua

Building Microservies

Sam Newman

Context Mapping

Alberto Brandolini

https://www.infoq.com/arti
cles/ddd-contextmapping/ 

C4 diagrams
Structurizr
Simon Brown
structurizr.com

Selenium

seleniumhq.org



© Zühlke 2018

Books and sources

Continuous Delivery

Jez Humble, David Farley

Discipline Flow

Stephan Janisch
Zühlke Engineering

Clean Code

Robert “Uncle Bob” C. 
Martin

Gherkin DSL

cucumber.io
specflow.org

Working Effectively 
with Legacy Code
Michael C. Feathers



© Zühlke 2018

Books and sources

Architectural Decision 
Record tooling
adr.github.io

Architectural Decision 
Record
Michael Nygard

http://thinkrelevance.com/
team/members/michael-
nygard

Christian Eder

Structurizr / Infrastructure 
as Code

https://github.com/Christia
nEder/Structurizr.Infrastruc
tureAsCode

Munchkin

Fantasy Card Game

www.worldofmunchkin.com

adr.github.io


